All types (
27 )
agt (
5 )
approximation (
8 )
Conference (
19 )
Journal (
14 )
network (
12 )
Preprint (
4 )
probability (
7 )

Sort by year:

A classical problem in appointment scheduling, with applications in health care, concerns the determination of the patients’ arrival times that minimize a cost function that is a weighted sum of mean waiting times and mean idle times. Part of this problem is the sequencing problem, which focuses on ordering the patients. We assess the performance of the smallest-variance-first (SVF) rule, which sequences patients in order of increasing variance of their service durations. While it was known that SVF is not always optimal, many papers have found that it performs well in practice and simulation. We give theoretical justification for these observations by proving quantitative worst-case bounds on the ratio between the cost incurred by the SVF rule and the minimum attainable cost, in a number of settings. We also show that under quite general conditions, this ratio approaches 1 as the number of patients grows large, showing that the SVF rule is asymptotically optimal. While this viewpoint in terms of approximation ratio is a standard approach in many algorithmic settings, our results appear to be the first of this type in the appointment scheduling literature.

We introduce a new iterative rounding technique to round a point in a matroid polytope subject to further matroid constraints. This technique returns an independent set in one matroid with limited violations of the other ones. On top of the classical steps of iterative relaxation approaches, we iteratively refine/split involved matroid constraints to obtain a more restrictive constraint system, that is amenable to iterative relaxation techniques. Hence, throughout the iterations, we both tighten constraints and later relax them by dropping constrains under certain conditions. Due to the refinement step, we can deal with considerably more general constraint classes than existing iterative relaxation/rounding methods, which typically round on one matroid polytope with additional simple cardinality constraints that do not overlap too much.

We show how our rounding method, combined with an application of a matroid intersection algorithm, yields the first 2-approximation for finding a maximum-weight common independent set in 3 matroids. Moreover, our 2-approximation is LP-based, and settles the integrality gap for the natural relaxation of the problem. Prior to our work, no better upper bound than 3 was known for the integrality gap, which followed from the greedy algorithm. We also discuss various other applications of our techniques, including an extension that allows us to handle a mixture of matroid and knapsack constraints.

We give new approximation algorithms for the submodular joint replenishment problem and the inventory routing problem, using an iterative rounding approach. In both problems, we are given a set of *N* items and a discrete time horizon of *T* days in which given demands for the items must be satisfied. Ordering a set of items incurs a cost according to a set function, with properties depending on the problem under consideration. Demand for an item at time *t* can be satisfied by an order on any day prior to *t*, but a holding

cost is charged for storing the items during the intermediate period; the goal is to minimize the sum of the ordering and holding cost. Our approximation factor for both problems is *O*(log log min(*N,T*)); this

improves exponentially on the previous best results.

We consider the following natural scheduling problem: Given a sequence of jobs with weights and processing times, one needs to assign each job to one of *m* identical machines in order to minimize the sum of weighted completion times. The twist is that for machine the jobs assigned to it must obey the order of the input sequence, as is the case in multi-server queuing systems. We establish a constant factor approximation algorithm for this (strongly NP-hard) problem. Our approach is necessarily very different from what has been used for similar scheduling problems without the fixed-order assumption. We also give a QPTAS for the special case of unit processing times

We consider robust network design problems where the set of feasible demands may be given by an arbitrary polytope or convex body more generally. This model, introduced by Ben-Ameur and Kerivin (2003), generalizes the well studied virtual private network (VPN) problem. Most research in this area has focused on ﬁnding constant factor approximations for speciﬁc polytope of demands, such as the class of hose matrices used in the deﬁnition of VPN. As pointed out in Chekuri (2007), however, the general problem was only known to be APX-hard (based on a reduction from the Steiner tree problem). We show that the general robust design is hard to approximate to within logarithmic factors. We establish this by showing a general reduction of buy-at-bulk network design to the robust network design problem. In the second part of the paper, we introduce a natural generalization of the VPN problem. In this model, the set of feasible demands is determined by a tree with edge capacities; a demand matrix is feasible if it can be routed on the tree. We give a constant factor approximation algorithm for this problem that achieves factor 8 in general, and 2 for the case where the tree has unit capacities.